
points are defined in the region of the ends of the interval [0, i] by the solution of Eq. 
(2.15). According to the data given in Table I 

Xol = 0A2/n ,  Xo~ = ( k - - t ) / n ,  k = 2 , . . . ,  n ,  xo~+l  = ~ - - X o l .  

For the function y(x) = ~(x)//x(l -- x), not bounded at both ends of the interval [0, i], 
uniform convergence of function (1.6) to integral (i.I) occurs at n -- 1 points. In this 
case the discrete vortices should be again arranged in the middle of each element, while 
the coordinates of the control points 

Xo~ = ( k - - O , 5 + v h ( O ) ) / n ,  k = 1 . . . .  , h i ,  Xoh = (k + 0.5 - - v ~ - h ( 0 ) ) / n ,  k = nl + t . . . . .  n - - l ,  

where the coefficients ~k(0) are found from Table i. 
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THE WAKE BEHIND THE BEARING BODY IN A VISCOUS LIQUID 

O. S. Ryzhov and E. D. Terent'ev UDC 532.516/517 

i. Vortex Sheet. Suppose the bearing body (a wing of finite span) is loaded in a uni- 
form flow of incompressible liquid. Assuming that the viscosity can be neglected, the most 
effective method of calculating the inductive resistance of the wing is as follows. The 
bearing surface and the contact interface formed behind it, and passing through which the 
tangential component of the velocity of vector is removed, are replaced by a system of at- 
tached and free vortices. The simplest version of the method operates in all with one con- 
nected vortex, which simulates the wing, and a pair of free vortices trailing from its ends. 
This system is sometimes called a horseshoe-shaped vortex, and it gives a lifting force (and 
circulation) that is constant over the whole area of the bearing surface, falling suddenly to 
zero at the ends of the wing. This scheme is, of course, only a rough approximation to the 
actual picture of the flow. 

For a more accurate description of the flow field we must start from the fact that the 
lifting force changes over the length of the bearing surface, falling smoothly to zero at 
its end sections. The circulation also changes over the span of the wing, and from each point 
of its trailing edge a free vortex runs off which then moves downward with respect to the flow. 
This system of free vortices forms a vortex sheet. Although these representations were de- 
veloped long ago [i, 2] they have not been of any value up to now [3]. In recent years to 
calculate the self-lnduced motion of vortex filaments the method of joining the external and 
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internal asymptotic expansions has been used; progress in determining the field structure of 
wake vortices is described in [4]. 

The related problem is the generation, development, and decay of ring vortices. In- 
teresting results in this area have been obtained by Lavrent'ev at the Institute of Hydrody- 
namics, Siberian Branch of the Academy of Sciences of the USSR, the results of which are 
described in [5]. The decay of vortices is discussed in [6]. 

Close to the wing the velocities induced by the vortices cause a displacement of the 
vortex filaments, and, consequently, deformation of the vortex sheet, and rolling up of the 
vortex sheet begins. The section of the vortex sheet transverse to the direction of the main 
flow enables the formation of two characteristic spirals to be detected, where a concentra- 
tion of the intensity of the vortices occurs [3]. When the vortex sheet descends from the 
leading edges of arrow-shaped or triangular wings its intense rolling up begins immediately. 
The numerical method of discrete vortices recently developed enables one to obtain, using a 
computer, the shape of the sheet both for nonseparatlng flow of the leading edge of the wing 
and when separation from it occurs [7]. 

It is an extremely difficult problem to study the spirals behind the wing. The non- 
stationary roll-up of a semiinfinite sheet formed in the initially established plane-parallel 
vortex-free flow at the edge of a plane plate suddenly removed at a certain instant of time 
has been investigated in [8]. The solution obtained was the basis for a model of the roll-up 
of a vortex sheet decending from the rear edge of the wing [9]; a two-term asymptotic of the 
equation of the spiral was established in [i0]. The theory of an ideal (nonviscous) liquid has 
also been used to describe the flow in the nucleus of a rolled-up sheet, which occurs at the 
vertex of a triangular wing [ii]. To construct the velocity field induced by vortex spirals, 
the asymptotic method of different scales, which is based essentially on the packing density 
of the turns of the spiral in the region of its focus, has recently been successfully employed 
[12]. 

As is well known, the contact surfaces are blurred due to the action of the viscosity of 
the liquid. The viscous diffusion of the vorticity, concentrated round the turns of the 
spiral, when they are very close to one another in space, has been studied in [9, 13, 14]. 
An asymptotic analysis of the system of Navier--Stokes equations using the method of different 
scales leads directly to the heat-conductlon equation, which satisfies the intensity of the 
vortex sheet as a result of an appropriate transformation of the independent variables [15]. 

A quite different approach was used in [16] based on the idea that the viscosity has the 
predominant effect on the formation of a laminar wake during the final stages of degeneration. 
At considerable distances from the bearing body the coils of the vortex spirals are completely 
broken up and disappear, although the trajectories of the particles may retain their spiral 
form for quite a long time. The structure of the wake in a viscous liquid can be established 
from the requirement that the velocity field is related to the resistance and lifting force 
of the wing and disappears as the values of these forces approach zero. The asymptotic 

644. 



Z l - - - -  

5 

2 I 

-0,6 

b 

; C  

i i i 
-0,4 -0,2 0 0,2 y 2 4 

Fig. 2 

I i i 

6 x 

solution, which describes the final stage of the propagation of a vortex trail far from the 
body around which the flow occurs, can be represented in the form [17] 

vx -- 4nx Cx + y exp ~ I 

vy 2n (y%--+ ~)  4x , ~2 _[_ z2 4x ' 

CN y Z  

where x, y, z are the axes of a cartesian system of coordinates, and the x axis is oriented 
in the direction of the main uniform flow running from infinity, Vx, vy, and v z are the com- 
ponents of the vector of the disturbed velocity of the particles of gas along the axes of 
this system of coordinates, and c x and cy are constants, the values of which are proportional 
to the resistance coefficients and the lifting force of the wing and inversely proportional 
to the longitudinal scale of the wake. Both the independent variables and the components of 
the perturbed velocity in Eqs. (i.i) are measured in a certain dimensionless system where we 
take the characteristic transverse scale of the wake as the unit of length along the y and z 
axes, and the longitudinal scale of the wake along the x axis, and we take as the unit of 
velocity the velocity of the main flow. 

Equations (l.1) remain true for a wake behind the body which is in a flow of compres- 
sible gas. As shown in [18], they can also be used in the transonic mode. In this case the 
so-called critical velocity serves as the unit of velocity and the particle density in the 
sonic flow is chosen as the unit of density. The specific volume of the gas, of course, 
varies from point to point, but relations (i.i) continue to hold since these changes come 
about independently. More accurately, the excess density satisfies the heat-conduction equa- 
tion with a coefficient equal to the reciprocal of the Prandtl number. Only for hypersonic 
velocities of motion of the gas does the structure of the wake suffer qualitative changes, 
which are due primarily to the fact that the particles are very strongly heated, passing 
through the front of the head shock wave, and their entropy increasessharply [19, 20]. 

The role of viscosity in the motion of ring vortices has been discussed in [5], where 
simple mathematical models used to describe turbulent processes are also described. 

2. General Properties of the Solution. We will write the equations for the current 
lines passing through the wake. In the system of units of measurement employed we have 

:dg ldx=  BelvyCx, g, z), d z l d x =  Relvz (x, g, z ) ,  ( 2 . 1 )  

where the Reynolds number Re~ is found from the above characteristic length, velocity, den- 
sity, and also from the value of the first coefficient of viscosity in the unperturbed flow. 
The appearance of the Reynolds number on the right sides of Eqs. (2.1) is explained by the 
affine compression of all the distances in the wake along its longitudinal direction when 
changing to dimensioniesg variables. As regards the special small parameter r by means of 
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which the amplitude of the perturbations was recorded in [18], we will include it in the 
values of the constants c x and Cy. 

Expressing the functions Vy and v z in (2.1) by means of relations (i.I), we obtain a 
system of two ordinary differential equations. At points with coordinates 

y = O, i -F z~/2x - -  e x p  (z~/4x) ( 2 . 2 )  

both transverse components of the vector of the perturbed velocity vanish. The solution of 
the last equation defines two branches z = -+2.24/xx of a parabola, symmetrically situated in 
the y = 0 plane. The points of intersection of these branches with the planes x = const give 
the centers of the vortices. In order to clarify this statement we will integrate Eqs. (2.1) 
in the plane of the transverse cross section of the wake, fixing the coordinate x = xo. The 
results for xo = 1 are shown in Fig. i. The tangents to the curve shown in the figure give 
the field of the directions of the transverse component of the velocity vector at each point 
of the chosen cross section of the wake. As a whole the picture is typical for a pair of 
diverging and diffusing vortices. It is useful to recall that when calculating the self- 
induced motion of a vortex filament in an ideal (nonvlscous) liquid by estimating the velocity 
along the axis of the vortex, according to the Biot--Savat law a logarithmic singularity is 
obtained if this axis is bent [1-3]. The effect of viscosity manifests itself primarily in 
the fact that at the center of the vortex both transverse components of the vector of the per- 
turbed velocity disappear, but its longitudinal component remains different from zero. 

We will calculate the components mx, '"y, mz of the dimensionless vector, defining the 
vorticity of the flow in the wake. Retaining only the principal terms in all the formulas 
we have 

% z ( y2 ) 
~'~---- 8n  ~z e x p  + z2 

4x ' 

Cx z v~ + z~ Cx g e x p  ' . 
~  8u  ~2 e x p  4z ' t ~  8 a  x ~ 4x 

Hence, the longitudinal component of the vortex vector is proportional, to a first approxi- 
mation, to the lifting force of the wing, while both transverse components are proportional 
to its resistance. All three components have the same order of magnitude and decay with 
distance in accordance with the same laws. However, in practical problems of aerodynamics 
the lifting force of the wing considerably exceeds its resistance, in view of which the 
numerical value of the constant Cy will be much greater than c x. Hence it follows that the 
direction of the vortex vector in the wake does not differ very much from the direction of 
the uniform flow from infinity. 

We will obtain the position of the maxima of mx. By differentiating the first of Eqs. 
(2.3) it can be seen that nile maximum values of the longitudinal component of the vortex 
vector occur along the branch z = • situated in the y = 0 plane of the parabola. These 
maxima do not coincide with the centers of the vortices, but are shifted closer to the plane 
of symmetry of the flow z = 0. 

3. Near Field. At first sight it would appear that the field of the directions of the 
transverse component of the velocity vector of the particles, which can be obtained from 
Fig. i, should give a complete representation of the nature of the motion in the wake behind 

646 " 



I T I 

- - 4  

a 

f I i 

o. I y 

F i g .  

Z 

15 

C 

I /s  
I I 1 I I I 

0 20 40 

4 

I I 

32 

the body around which the flow occurs. However, this conclusion is erroneous. As will be- 
come clear in what follows, we must distinguish between the near and far regions where the 
current lines differ considerably in their shape, although the overall picture shown in Fig. 
1 remains unchanged when changing from one plane of transverse cross section of the wake to 
another. 

In order to explain how the fields of motion of the gas differ in the near and far 
regions, we will first transform the system of equations (2.1) by introducing the new vari- 
ables 

Re cy ~ Re Icy Re 1 cy 
x = \  2n ] x l '  Y =  2~ Yl, z = ~ z  I. ( 3 . 1 )  

In these variables t h e  shape of the current lines is independent of the coefficients Re, and 
Cy, since 

dYl _ t s ~ 2 ~ o § z~ 

~,,, y ~ + ~  ~ x P -  4x~ + ~, ,7~ ~ . , 

dzl Ylzl exp -[- .~ ~'~ exp --i 
d~ y~+~ 4x, ] u~+ 4~ ' 

(3.2) 

It is determined solely by the position of the initial point when solving the system of equa- 
tions (3.2). In order to see the differences in the behavior of the current lines in the 
near and far regions, we must either integrate the equations over a large range of variation 
of the indepenedent variable, or choose the initial points in different planes of transverse 
cross section of the wake. This sometimes makes it inconvenient to realize numerically on a 
computer. 

In practice it turns out to be simpler to work with the system of equations (2.1) in the 
initial variables. By dispensing with the transformations (3.1) we can always consider the 
initial point situated in the x = xo = 1 plane, but it necessitates varying the coefficient 
Re, Cy/2~. It can be seen that large values of this coefficient correspond to the near regions 
of the wake, and a reduction in its value occurs when one transfers to the far region, if the 
curves investigated are extended moderate distances from the initial plane xo = I. By then 
reverting to transformation (3.1), we can, by fixing Re, Cy/2~, calculate the relations ob- 
tained at different distances along the length of the wake. 

The characteristic shape of the current lines for the near region is obtained for Re, 
Cy/2~ = 1000. Figures 2a-c show the results of the calculations when the transverse co- 
ordinates of the initial point Yo = 0 and Zo = 1.9. It can be seen from the projection of 
this curve onto the zy plane that the particles of gas execute helical motions. The axis 
around which the rotations occur is the trajectory of the center of one of the vortices; 
according to Eqs. (2.2) it is bent, receding from the plane of symmetry of the flow z = 0. 
Hence, the turns of the current llne are displaced quite considerably along the span of the 
wing, which can be traced quite clearly from the projection on the zy plane. It can be seen 
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from the projection on the xy plane that in addition there is a small descent of the turns 
in a direction opposite to the action of the lifting force of the body. 

The deformation of the initial section of the straight line when its points move along 
current lines is even more significant. The sections of the current surfaces by the trans- 
verse planes x = const obtained in this way are shown in Fig. 3a-b. When constructing 
all the curves the spacing Ax between successive sections was chosen to be 0.012, but where- 
as in Fig. 3a the first curve shows the initial position of the section in the x = xo = 1 
plane, in Fig. 3b the first curve relates to the section x = 1.192. Such a pattern will be 
observed experimentally if the particles are colored in some way in their initial position; 
this is in fact used in different methods of flow visualization [21]. 

Figure 3 demonstrates the spiral convolution of the current surface. This process is 
qualitatively similar to the convolution oz a vortex sheet along its sides when either the 
viscosity of the liquid is completely ignored, or the effect of dissipative factors is assumed 
to be of the second degree [12, 15]. However, there is also a considerable difference be- 
tween the spirals investigated and the vortex spirals in an ideal liquid. The development of 
the latter is characterized by a sawtooth distribution of the flow parameters in any direction 
in the x = const plane, since when passing through the contact surface in an ideal liquid the 
tangential component of the velocity vector suffers a discontinuity. As was shown above, in 
an arbitrary section of the wake, the structure of which is formed mainly due to the action of 
viscosity, there are always two maxima of ~x" Although in the near region of a viscous wake 
the spiral form of the convolution of the current surfaces is extended, the contact surfaces 
are completely blurred and disappear. 

4. Far Field. When Fig. 2a-c is carefully studied it is found that when the longi- 
tudinal coordinate is increased, the turns of the current llne become more widely spaced. 
This property is by no means random, bu~ represents the transition to the far region of the 
wake, where the helical form of motion of the gas particles gradually ceases. The shape of 
the current lines in the intermediate stage can be obtained by taking Rex Cy/2W = i00. The 
results of calculations, when the initial current has transverse coordinates yo 0 and zo = 
i.i in the x = xo = 1 plane, are shown in Fig. 4a-c. It is clear from the projection of this 
curve on the yz plane that =he helical motion of the particles in this case reduces in all to 
a single rotation. Then, as the projection on the xz plane demonstrates, the current line 
is deflected along the wing span from the plane of symmetry of the flow z - 0 and much more 
slowly than the trajectory of the center of the corresponding vortex, described by the para- 
bolic relationship (2.2). For this reason this trajectory ceases to be the axis around which 
the current line twists. It can be seen from the projection on the xy plane that soma dis- 
placement occurs in the opposite direction to the lifting force applied to the body. 

We will follow the deformation of the initial section of the straight line which is 
dictated by the motion of the points along the current lines. Two sections of the currant 
surfaces by the transverse planes x - const formed in this way are shown in Fig. 5a-b. 
The spaclng Ax between successive sections was chosen to be 0.12 each time; the first curve 
in Fig. 5a shows the initial position of the section in the x - xo " 1 plane, and the first 
curve in Fig. 5b relates to the section x - 3.76. In view of the fact that at the intermedi- 
ate stage the current lines in these calculations make a single rotation around the trajectory 
of the center of any vortex, the spirals in Fig. 5b consist in all of a single turn. 

648 



a 

Fig. 6 

When transferring into the far region of the wake itself the spiral form of the convolu- 
tion of the current surfaces completely disappears. It is easy to establish the asymptotic 
form of the current lines hera by expanding in series the exponents on the right sides of 
Eqs. (1.1) with the condition ya + z~ << x. The correctness of the latter follows directly 
from the results of the calculations discussed above. As a result of simple calculations we 
obtain 

dy R e l c y  i dz Re 1 cy yz 
-- (4.1) 

dx 8~ x ' dx 32~ x z"  

The system of equations (4.1) can be integrated in explicit form 

Relcy [ [Relcyl2 t+~ClX 1 
y =  - ~  l n c l x  , z = c ~ e x p  - - \  i 6u  / - " 

The main conclusion to which these relations lead is that as x § ~ the current lines suffer a 
vertical displacement of the order of in x downwards (in the opposite direction to the action 
of the lifting force of the body), and their deflectlon along the wing span from the plane of 
symmetry of the flow z = 0 tends to a constant ca. Numerical integration of the initial sys- 
tem of equations (2.1), the right sides of which are not subjected to any simplifications, 
leads to results in excellent agreement with the conclusion formulated if we choose Re~ Cy/ 
2~ = i0, and, as usual, places the initial point in the lx ffi xo ffi 1 plane. Hence, when one moves 
downwards a fairly considerable distance along the flow from the bearing body, colorlng [21] 
of the particles of gas in their inltial position along a certain llna should lead to visual- 
ization of the current surfaces without helical twisting. It would be interesting to verify 
this conclusion experimentally. 

5. Current Surfaces. In oTder to be able to represent more clearly the process of roll- 
up of the current surface in the near region of the wake, it is best to return to the repre- 
sentation of the spatial pattern of the flow. One of the current surfaces discussed above 
with Rel Cv/2~ = 1000 is shown in Fig. 6a-b in a rectangular isometric projection. The 
longitudin~l curves correspond to the position of the current lines; its limiting CrOss sec- 
tions by the transverse planes x = const give the first and last curves in Fig. 3a-b. 
When the distance from the body around which the flow occurs is increasedp the number of 
turns of the spiral twist of this surface increases gradually until the far regiqn of the 
wake is reached. In agreement with the above discussion, additional roll-up of the current 
surfaces ceases here. 
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AUTOMATIC DAMPING OF VIBRATIONS OF AN AIRPLANE WING BY INTERNAL 

CONTROL FORCES 

V. I. Merkulov UDC 532.5 

An increase in the absolute dimensions of aircraft leads to a decrease in their dynamic 
rigidity. Both the frequency of natural vibrations and the structural damping factor are 
decreased. The deformations produced by impulsive forces die down slowly, but periodic dis- 
turbances may increase as a result of resonance. All this leads to a decrease of the flying 
llfe of the structure. We study various methods of damping elastic vibrations by using in- 
ternal forces. The amplitude, frequencies, and phase of the forces acting are governed by 
a control system. A movable mass, an internal tension, a flexible shaft, and a gyromotor 
are considered as a control. In contrast with the familiar method using external aerodynamic 
forces, an internal control continues to be effective also on the airfield where, as it turns 
out, the airplane is subjected to the largest dynamic load. 

I. Flexural--torslonal vibrations of a wing of small sweepback and large aspect ratio can 
be described by a two-component vector function {w(y, t), 8(y, t)} [i]. Here w(y, t) is the 
vertical displacement from the equilibrium position of the elastic axis of the wing, and 8(y, 
t) is the rotation of a chord of the wing about the elastic axis. These quantities are func- 
tions of the coordinate y of a cross section and the time t. In terms of these variables, 
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